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This study examined the impact of model biases on climate change signals for daily precipitation and for minimum and maximum
temperatures. Through the use of multiple climate scenarios from 12 regional climate model simulations, the ensemble mean,
and three synthetic simulations generated by a weighting procedure, we investigated intermodel seasonal climate change signals
between current and future periods, for both median and extreme precipitation/temperature values. A significant dependence of
seasonal climate change signals on the model biases over southern Québec in Canada was detected for temperatures, but not for
precipitation.This suggests that the regional temperature change signal is affected by local processes. Seasonally, model bias affects
future mean and extreme values in winter and summer. In addition, potentially large increases in future extremes of temperature
and precipitation values were projected. For three synthetic scenarios, systematically less bias and a narrow range of mean change
for all variables were projected compared to those of climate model simulations. In addition, synthetic scenarios were found to
better capture the spatial variability of extreme cold temperatures than the ensemble mean scenario. These results indicate that the
synthetic scenarios have greater potential to reduce the uncertainty of future climate projections and capture the spatial variability
of extreme climate events.

1. Introduction

Climate change has significant effects on the natural (e.g.,
hydrologic systems) and social components (e.g., urban
development) of regional systems [1, 2]. Changes in extreme
weather and climate events have particularly significant
impacts and are among the most serious challenges for all
human societies. In recent decades, an unprecedented num-
ber of extreme climate events have occurred, such as unusu-
ally hot days and nights, fewer unusually cold days and nights,
and fewer frost days [3], while heavy rainfall has also become
more frequent and intense [4]. In addition,more extreme and
frequent floods and droughts are anticipated in the future
[5, 6]. All of these factors exert a major influence at regional
scales, potentially increasing the risk of disaster for both
human and environmental systems. Therefore or, feasible

plausible regional climate scenarios are necessary to effi-
ciently adapt to climate change and tomitigate the risk of dis-
aster, especially when extreme weather and high impact cli-
matic events are concerned.Confidence in projecting changes
in the direction and magnitude of climate extremes depends
onmany factors, for example, the type of extreme, the region,
and season, the amount and quality of observational data, the
understanding of underlying processes, and the reliability of
model simulations, especially at the regional scale [6].

Recently, numerous regional climate models (RCMs)
have provided regionalized climate information to assess the
hydrologic and environmental as well as the social and
economic impacts of climate change (see the recent CORDEX
initiative organized by the World Climate Research Pro-
gram, http://www.cordex.org/). These RCMs are nested in
atmosphere-ocean global climate models (AOGCMs) or
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global-scale reanalysis products. Because RCMs incorporate
higher-resolution surface forcings (i.e., topography, land-sea
contrast, land surface conditions, and other parameters), a
large range of climate responses has been detected in previous
studies, depending on the combination of RCMs/AOGCMs
[7–9]. In particular, the reported temperature responses of
the RCMs during winter are extremely variable due to snow-
albedo feedbacks that are quasiabsent in AOGCMs as a result
of their coarse horizontal resolution [10, 11]. The high and
variable spatial resolutions of RCMs may therefore result in
higher spatial and temporal variability in climate responses
compared with those from AOGCMs, which also means
potentially higher uncertainty in climate simulations derived
from both RCMs and AOGCMs when changes in regional
surface conditions are considered [12, 13].

An accurate assessment of confidence in future regional
scale climate models from all available RCMs is essential to
identify sources of uncertainty and thereby prevent erroneous
analysis in climate change impact studies at regional scales
[14, 15]. Therefore, it is crucial to systematically assess the
dependence of projected regional climate change signals on
model bias at regional scales [16].The presence of this depen-
dence may be an important issue when applying an ensemble
scheme to consider the uncertainty in combined multimodel
simulations with weighting procedures, as the main assump-
tion behind an ensemble scheme is that the climate responses
(e.g., model bias) in a model during the past provide robust
guidance on the likelihood of future responses.

In addition, we need to investigate a range of climate
change signals to estimate the variability of multi-RCM/
AOGCM projections. The results of several carefully con-
trolled comparison studies have been reported by the Euro-
pean Prediction of Regional Scenarios and Uncertainties for
Defining European Climate Change Risks and Effects (PRU-
DENCE) [17], the ENSEMBLES project over the whole Euro-
pean region [8], and the recent North American Regional
Climate Change Assessment Program (NARCCAP) [18].
These studies evaluated the accuracy of RCMs by comparing
regional climate simulations with historical observed data
and estimated the uncertainty of projected climate scenarios
over all study regions (i.e., over Europe and theUSA). In these
studies, changes in mean values between the current and
future periods were investigated to assess the uncertainty of
future climate conditions as an indigenous response of RCM/
AOGCM combinations to emission scenarios. To extend
these studies to southern Québec (Canada), we investigate a
range of spatial and temporal changes in meteorological vari-
ables (i.e., daily precipitation and minimum and maximum
temperatures (𝑇min and 𝑇max)) under one Special Report
on Emissions Scenarios (SRES) emission scenario (A2). We
compare climate change signals estimated by differences in
both extreme (e.g., 90th percentile of daily precipitation, and
the 10th and 90th percentiles of daily 𝑇min and 𝑇max) and
median (50th percentile) values between the reference (1971–
1995) and future (2041–2065) RCM/AOGCM simulations.

A model-performance-based weighting scheme was suc-
cessfully applied, and it demonstrated that model weighting
might improve the average skill of climate projections [2, 19–
21]. Eum et al. [2, 22] applied a comprehensive weighting

method that takes into account the skill of both RCMs
and AOGCMs based on RCM/AOGCM performance. These
studies formulated a cumulative density function (CDF)
using a comprehensive weighting method based on the per-
formance of RCM/AOGCM and RCM/Reanalysis combina-
tions. Using aMonte Carlo simulation (MCS) technique, syn-
thetic future scenarios were generated based on the CDFs and
were compared with twelve RCM/AOGCM simulations and
the ensemble mean to consider a range of climate change
signals for each meteorological variable. More details are
provided in [2]. As in the previous studies, we use twelve
RCMs, the ensemble mean, and five synthetic future scenar-
ios to investigate the intermodel correlation of changes in bias
and the range of climate change signals. The focus of this
study is on the following three factors: (1) the dependence of
projected climate change signals onmodel bias at the regional
scale; (2) a comparison of the performance of RCM/AOGCM
simulations and their synthetic scenarios; and (3) a com-
parison of seasonal climate change signals for each RCM/
AOGCMand synthetic scenario, considering themedian and
extreme values.

The next section of the paper provides a description of
the RCM/AOGCMsimulation and scenarios generated based
on weighting factors. The study area and reference-gridded
observed datasets are presented in the subsequent section.
The results section presents an intermodel correlation of the
bias and climate change signal with the range of extreme
and median values of climate change signals for each season
and subregion within the study basin. In the summary and
discussion section, we discuss our results and offer a general
conclusion regarding the climate signals developed over the
study area.

2. RCM/AOGCM Simulations and
Synthetic Scenarios

This study used twelve RCM/AOGCMcombinations released
from NARCCAP (http://www.narccap.ucar.edu) and from
the Data Access and Integration (DAI) project of Environ-
ment Canada (recently renamed the Canadian Climate Data
and Scenarios portal, ccds-dscc.ec.gc.ca/). Table 1 presents the
different versions of the Canadian Regional Climate Model
(CRCM) [23, 24] according to initialization and domains
at 45 km horizontal resolution provided by the Climate
Scenarios and Services Group at Ouranos. CRCM4.1.1 has
a smaller domain over Quebec (QC domain, 112 × 88 grid
points) than other CRCMs, which incorporate a large domain
covering North America (AMNO, 201 × 193 grid points).

NARCCAP released multiple high-resolution regional
climate scenarios driven by multiple AOGCMs forced with
the A2 emission scenario (e.g., [25]). In this study, we used
multiple RCMs such as the CRCM4.2.0 and the Experimental
Climate Prediction Version 2 (ECP2), MM5-PSU/NCAR
mesoscalemodel (MM5I),Weather Research and Forecasting
Models by US groups (WRFG), Regional Climate Model
version 3 (RegCM3), and Hadley Regional Model 3 (HRM3)
by European groups. ARPEGE (Action de Recherche Petite
Echelle Grande Echelle) was developed by Meteo France to
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Table 1: Description of RCM/AOGCM combinations used in this study.

Number RCM Driven by Time window Modeling center/source

1 CRCM4.2.3
(aet)

CGCM3
4th member 1963–2001

2041–2070
Ouranos/University of Quebec at
Montreal (UQAM)/Environment
Canada

2 CRCM4.2.3
(aev)

CGCM3
5th member

3 CRCM4.1.1
(QC domain)

CGCM3
4th member

1968–2000
2041–2070

4 CRCM4.2.0
CGCM3
4th member

1968–2000
2041–2070

5 RCM3 1968–2000
2041–2065

6 CRCM4.2.0

CCSM

1968–1998
2041–2070

7 MM5I 1968–1999
2041–2070 NARCCAP

(http://www.narccap.ucar.edu/)
8 WRFG 1968–1999

2041–2070

9 RCM3
GFDL

1968–2000
2041–2070

10 ECP2 1968–2001
2041–2070

11 HRM3 HadCM3 1968–2000
2041–2070

12 ARPEGE ARPEGE 1961–2001
2041–2070 Ouranos/Météo-France

simulate the European climate [26], and the Climate Sce-
narios and Services Group at Ouranos produced a regional
climate simulation over North America.

Five driving AOGCMs were used in this study: (1) the
NCAR Community Climate System Model: CCSM [27]; (2)
the third Canadian Global Climate Model: CGCM3 [28]; (3)
the Geophysical Fluid Dynamics Laboratory: GFDL [29]; (4)
the Hadley Centre Coupled Model, version 3: HadCM3 [30];
and (5) the ARPEGE global model version 3 [31]. Note that
not all RCMs incorporated the five driving AOGCM simula-
tions due to the limited RCM/AOGCM data pool. For exam-
ple, HRM3 is driven only by HadCM3, and GFDL is used
in RCM3 and ECP2 simulations (see Table 1). However, this
study includes an identical CRCMversion (CRCM4.2.0) with
different driving AOGCM conditions (CGCM3 and CCSM),
which enabled us to assess the effects of different boundary
forcings according to the variability in RCM/AOGCM simu-
lations.

Eum et al. [2] suggested the following comprehensive
weighting factor that comprises the RCM and AOGCM
weighting factors and a multiplication factor:

𝑊𝑘 = 𝑤
RCM
𝑖
× 𝑤

AOGCM
𝑗

𝑤 =∏

𝑚

𝑓
𝑛
𝑚

𝑚
, (1)

where 𝑊𝑘 is the comprehensive weighting factor of the 𝑘th
RCM/AOGCM combination; 𝑤RCM

𝑖
is a weighting factor for

the 𝑖th RCM calculated from the performance of RCM/Rea-
nalysis data;𝑤AOGCM

𝑗
is a weighting factor of the 𝑗th AOGCM

estimated from the average performance of RCM simulations
driven by the same AOGCM; and𝑤 is a combined weighting

factor [8] consisting of a performance metric 𝑚(𝑓𝑚) and an
exponent 𝑛𝑚. This study evaluated five performance metrics:
relative absolute mean error, annual variability, spatial pat-
tern, extreme events, andmultidecadal trend [2]. If reanalysis
data was used instead of an AOGCM in the comprehen-
sive weighting factor, we assumed that 𝑤AOGCM

𝑗
would be

1.0 because the reanalysis data forced by observed data
through state-of-the-art assimilation techniques, for exam-
ple, National Centers for Environmental Prediction/National
Center for Atmospheric Research (NCEP/NCAR) [32] and
European Centre for Medium-Range Weather Forecasts
(ECMWF-ERA40) [33], can be considered as near-best-fit
models, although some biases still exist.The exponent 𝑛𝑚 rep-
resents the relative importance of the performance metrics
andmay significantly affect the performance of the weighting
factor. Eum et al. [2] used the differential evolution (DE) opti-
mization scheme [34] to determine an optimal relative
importance and then compared it with the equal relative
importance considering the skills of RCMs and AOGCMs,
which were referred to as DE (RCM/AOGCM) and EQ
(RCM/AOGCM), respectively. More details on the weighting
factor and its use can be found in [2].

Using the CDFs formulated with DE (RCM/AOGCM)
and EQ (RCM/AOGCM) and simple equal probability (SEP)
that assigned equal weighting to all RCMs, we generated syn-
thetic scenarios with the MCS technique over the common
time windows given in Table 1: hindcast (25 years from 1971
to 1995) and future (25 years from 2041 to 2065). In addition,
we used an ensemble mean scenario that simply averaged the
simulations from all RCM/AOGCMs. Therefore, this study
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Figure 1: Study area over Québec and Ontario Provinces, Canada.

investigated the climate signals from 16 simulations (i.e., 12
RCM/AOGCM simulations and four synthetic scenarios).

3. Application

3.1. Study Area. As a follow-up case study of previous climate
change studies [2, 22], we selected the Southern Quebec and
Ontario regions in Canada bounded by 43.93–48.08∘N and
71.97–78.13∘W (Figure 1). This area, which is covered by 113
grid points on the CRCM 45-km polar stereographic (PS)
grid, was divided into four subzones to investigate the spatial
variability of model performance, as significant differences
across these subzones were obtained from the RCM runs for
both the current and the future simulated periods [2].

The reference-gridded observed datasets of [35] were
used to calculate model bias at each grid point. The gridded
data sets provided a daily time series of precipitation and
temperature (𝑇min and 𝑇max) derived from a Canada-wide
spatial model (∼10-km gridded climate dataset) using data
from Environment Canada’s 7,514 stations from 1961 to 2003;
the number of stations active for a given year ranged from
2,000 to 3,000 for precipitation and from 1,500 to 2,200
for temperature. All gridded climate data (all RCMs given
in Table 1, as well as the gridded observed data of [35])
were interpolated to the CRCM 45 km PS grid to facilitate
comparison of model performances (see [22]).

3.2. Bias and Climate Change Signal. We calculated the
bias and climate change signals for all climate scenarios at
each grid point and then aggregated them over the four
subregions to analyze the relation between bias and climate
change signals for each subregion. Bias was calculated from

the differences between simulated and gridded observed data
[35], and the climate change signal was calculated by the
difference between the mean and extreme values for the
future (2041–2065) and the reference (1971–1995) periods
from RCM/AOGCMs or synthetic simulations.The variables
consideredwere daily precipitation,𝑇min, and𝑇max, which are
key input data for environmental and hydrologic modeling.
The analysis was conducted on themedian and extremes, that
is, the 90th percentile of daily precipitation, the 10th and 90th
percentiles of daily 𝑇min and 𝑇max, and the 50th percentiles of
all variables.

4. Results and Discussion

4.1. Correlation between Bias and the Climate Change Signal.
Figures 2 and 3 show spatial maps of the bias and the climate
change signal for the three variables (mean values averaged
over the 12 RCM/AOGCM simulations) during summer
and winter, respectively. These maps were initially used to
examinewhether a regional pattern of bias versus signal char-
acteristics existed within the study area. For precipitation,
there was a considerable negative relationship between bias
and climate change signal in the study area. Grid points where
high biases were identified, in particular over the southeast
area, projected a low climate change signal in precipitation.
In summer, for both 𝑇min and 𝑇max, a general cold bias was
apparent over the whole region and was more pronounced
in the south along the St. Lawrence valley and in the east.
These large biases generally corresponded to the location of
small climate change signals, with larger signals found in the
southwestern region.These results may have been induced by
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Figure 2: Spatial map of intermodel biases and climate change signals averaged for all RCM/AOGCMs’ simulations during summer season
for precipitation (in mm/d) and minimum and maximum temperatures (in ∘C).
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Figure 3: Same as Figure 2 but for the winter season.
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Table 2: Intermodel correlation between simulated change and bias for seasonal mean precipitation and temperatures. Precipitation (PPT),
𝑇min, and 𝑇max represent precipitation, minimum temperature, and maximum temperature, respectively. Bold font in correlation coefficient
represents the case in which the intermodel correlation is significant at the 90% confidence level (absolute values above |0.497|). Each
subregion or zone (from 1 to 4) represents each subarea (SW, NW, SE, and NE, resp.) defined in Figure 1.

Zone Season Mean change versus bias 90th percentile change versus Bias 10th percentile change versus bias
PPT (mm/d) 𝑇min (

∘C) 𝑇max (
∘C) PPT (mm/d) 𝑇min (

∘C) 𝑇max (
∘C) 𝑇min (

∘C) 𝑇max (
∘C)

1

Spring 0.55 −0.53 0.42 0.36 −0.01 −0.36 −0.62 −0.64
Summer −0.30 −0.87 −0.61 −0.09 −0.84 −0.76 −0.84 −0.80
Autumn 0.18 −0.56 −0.18 −0.23 −0.33 −0.78 −0.76 −0.47
Winter −0.17 −0.86 −0.82 −0.10 −0.90 −0.33 −0.44 −0.57

2

Spring 0.64 −0.68 0.43 0.79 −0.08 −0.42 −0.61 −0.64
Summer −0.38 −0.88 −0.76 −0.18 −0.74 −0.71 −0.78 −0.87
Autumn −0.26 −0.67 −0.24 −0.38 −0.25 −0.51 −0.59 −0.54
Winter −0.35 −0.87 −0.85 −0.48 −0.91 −0.28 −0.46 −0.60

3

Spring 0.15 −0.65 −0.41 −0.32 −0.06 −0.33 −0.57 −0.47
Summer −0.50 −0.35 −0.19 −0.27 −0.75 −0.79 −0.80 −0.87
Autumn 0.19 0.13 0.27 −0.11 −0.33 −0.71 −0.67 −0.54
Winter −0.21 −0.85 −0.83 −0.39 −0.89 −0.30 −0.45 −0.59

4

Spring 0.55 −0.72 0.28 0.48 −0.01 −0.38 −0.59 −0.51
Summer −0.37 −0.87 −0.76 −0.01 −0.77 −0.70 −0.76 −0.88
Autumn 0.17 −0.58 −0.24 −0.04 −0.26 −0.46 −0.55 −0.49
Winter −0.33 −0.87 −0.87 −0.46 −0.91 −0.26 −0.44 −0.60

the relatively coarse-scale resolution, which may have caused
some systematic errors over complex topography and hetero-
geneous surface conditions, especially in the south near the
St. Lawrence valley.There may have been low level land and a
river in a grid, but the RCM simulated climate conditions in
the grid as either land or a river (also with a smoother topo-
graphic effect in the RCMcompared to the real physiographic
features), whichmay affect both biases and climate signals for
all variables in the south near the St. Lawrence valley. Recent
results over this area [36] and over Europe (e.g., over the
UK in [37]) have revealed that the added value from higher-
resolution models when modeling very fine local-mesoscale
climate patterns over the inner domain, including the diurnal
variations in temperature and winds and the effect of wind
channeling (which affects the temperature advection), is cru-
cial to decreasing the systematic biases in local climatology.
In winter, warm biases for both 𝑇min and 𝑇max were found
in the north, and cold biases were found in the southwest
and southeast in summer. In such cases, the signals were
slightly higher/lower in the north/south where warm/cold
biases were apparent, along with a clear warming trend in
𝑇min (but not 𝑇max), which was not apparent in summer.

In addition to the intermodel averaged bias and climate
change signals of mean values across the study area, bias
defined by the spatially averaged differences between sim-
ulated and gridded observed data for each subregion was
calculated for each RCM/AOGCM combination with regard
to both the mean and the extreme of daily 𝑇min, 𝑇max, and
precipitation. In this way, the corresponding mean spatial
climate change signals were calculated. Using all of the RCM/
AOGCM simulations, we calculated the intermodel Pearson’s

correlation between the bias and climate change signals for
each season and subzone (as presented in Figure 1). Table 2
shows the intermodel correlation between the simulated
climate signal and bias for precipitation and temperature
fields, with the bold font representing the cases where the
intermodel correlation was significant at the 90% confidence
level (i.e., above |0.497|). A significant correlation indicates
that the model bias is linearly linked to the projected
climate change signal of mean and extreme values for both
a season and subregion. Note that the bias and the signal
were calculated based on spatially averaged values over each
subregion for each of the 12 AOGCM/AOGCM simulations,
which provided 12 pairs of bias and signal values for the
calculation of intermodel correlation.

For precipitation, only 4 of the 16 cases had a significant
intermodel correlation between the mean change and bias
in spring. In addition, only one case had a significant inter-
model correlation at the 90th percentile in spring in subzone
2, indicating that the linear dependency of the climate
change signal on the model bias for both mean and extreme
values of precipitation was not significant, except in spring.
These results suggest that the precipitation projections might
be mainly affected by emission scenarios or large-scale
boundary forcings from AOGCMs and by local effects such
as topography and local convection and their systematic
influences on spatial biases over most of the study area in
spring. In other seasons, biases and forcing factors were
randomly distributed, with no clear link between bias features
and climate signals. This means that the large-scale flow
from AOGCMs dominated the regional climate responses
during most of the year, particularly over the Great Lakes/St.
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Lawrence valley. This is also in line with a recent study over
the same area [38], which showed that the largest source
of uncertainty in summer or winter simulated (RCM) pre-
cipitation originated from the AOGCM selection, especially
for heavy rainfall and along the St. Lawrence valley, which
systematically exhibited a higher uncertainty value.

For 𝑇min, there were prominent negative correlations
between the mean change and bias in 14 cases (87.5%), imply-
ing that the RCMswith a higher positive bias (overestimation
of observed 𝑇min values) were likely to project a lower mean
change and vice versa. Remarkably, the correlations between
large extreme changes (i.e., 90th percentile of 𝑇min) and bias
were mainly significant only for summer and winter in all
subregions, whereas in most cases, the correlations of cold
extreme changes (10th percentile of 𝑇min) with bias were
significant except in winter. Such results indicate that the
extreme minimum temperature (biases and climate change
signals) for all seasons may be significantly and systemat-
ically affected by local or regional physical processes (e.g.,
topography and surface conditions), while dependingmainly
on the RCM/AOGCM sensitivity over the model domain
rather than model bias for spring and autumn at the warm
extreme (90th percentile) and for winter at the cold extreme
(10th percentile). This also reflects the strong or systematic
influences of surface conditions through spring to autumn
both on the mean values of 𝑇min and on the cold extremes
of 𝑇min from the proper diabatic fluxes, especially during
thaw and frost periods in spring and autumn, and during the
storage of heat within the soil in summer.

For 𝑇max, the correlation between the mean change and
model bias was also significant only in summer and winter,
whereas the correlation between the 90th percentile 𝑇max
change and bias was significant mainly in summer and
autumn (except for subzone 4). The relationship between
bias and the climate change signal of the 90th percentile
𝑇max during winter was not significant because heat waves
are a large-scale forcing derived from large-scale patterns
such as the El Niño Southern Oscillation (ENSO), Pacific
Decadal Oscillation (PDO), and blocking events over the
eastern Pacific, among other climate phenomena (e.g., [39]).
In winter, the warm extreme of the 𝑇max climate change
signal was mainly affected by the boundary conditions of the
AOGCMs, which provided large-scale patterns rather than
systematic biases in RCMs. However, in 87.5% of all cases,
there were significant negative correlations between the 10th
percentile change and bias, suggesting a quasisystematic link
between climate change signals and bias for the cold extreme
of 𝑇max. In summary, during summer, climate change signals
significantly depended on the model bias in all subzones
for both mean seasonal 𝑇min and 𝑇max, as well as for their
warm and cold extremes (i.e., their 10th and 90th percentiles).
During winter, the situation was similar, although the depen-
dence was only significant for the 10th percentile of 𝑇max and
90th percentile of 𝑇min climate change signals. In spring and
autumn, the regional warm extreme (i.e., the 90th percentile)
was affected mainly by the RCM/AOGCM sensitivity over
the model domain, but it was still correlated with the bias for
the cold extremes of 𝑇max and 𝑇min (10th percentiles). Hence,
the dependence of moderate temperature changes on model

bias, that is, the mean change in 𝑇min and the 10th percentile
change in 𝑇max, was significant in all seasons within the study
area.

4.2. Comparison of RCM/AOGCM and Synthetic Simulation
Performance. Figure 4 shows scatter plots of the intermodel
and synthetic datamean changes versus bias for precipitation,
𝑇min, and 𝑇max. Because the differences in the relations
between mean change and bias in all subzones were insignif-
icant, the mean change and bias in Figure 4 were spatially
averaged over the study area. Although we investigated the
intermodel bias and mean changes for all seasons, only the
results for summer and winter are shown here for brevity,
as the majority of significant correlations (i.e., mean change
versus bias) among model runs were found for these two
seasons, as suggested in Table 2. All of the trend lines
for both precipitation and temperature changes were in
inverse proportion to bias, with a negative correlation. In
addition, the four synthetic scenarios represented by red color
(ensemble mean from 12 RCM/AOGCM simulations, DE
(RCM/AOGCM), EQ (RCM/AOGCM), and SEP) systemati-
cally showed less bias and a narrow range ofmean change and
bias for all variables. CRCM423(AEV) CGCM3 substantially
overestimated the precipitation amount during both summer
and winter. However, the effect of this large bias was not
significant on the climate change signals, as reflected in
Table 2. CRCM4.2.3 had amuch lower biaswhen it was driven
by the other members of the CGCM3 model group (i.e.,
AET simulation with the 4th CGCM3 member versus the
AEV-5th CGCM3 member), indicating a substantial effect
from members of the same AOGCM on RCM accuracy, as
well as on the uncertainties in the climate change signal.
For both 𝑇min and 𝑇max, most RCM/AOGCM simulations
were underestimated in summer and overestimated inwinter,
suggesting that the RCM/AOGCM simulations considered
in this study were systematically biased in both seasons. In
particular, theHRM3 HadCM3 substantially underestimated
both temperatures in summer but overestimated them in
winter. In addition, the scatter plots in winter had steeper
slopes, a wider range of biases, and higher 𝑅2 values for
the trend line compared with those in summer, indicating a
stronger correlation between model bias and mean change
in winter, with a higher uncertainty in 𝑇min projections in
winter. The synthetic scenarios were also clearly less biased
inwinterwithmore consensual climate change signals, falling
near the middle of the range of climate signals (i.e., reduced
uncertainties from both DE and EQ simulated values) than
the RCM/AOGCM raw outputs for all variables. In addition,
DE (RCM/AOGCM) and EQ (RCM/AOGCM) projected
higher climate change signals than the ensemble mean, espe-
cially for precipitation (and 𝑇min, to a lesser extent) because
the performances of both synthetic scenarios depended on
the accuracy of each RCM/AOGCM in the form of the
weighting factor, whereas the ensemble mean projected a
more conservative signal, which strongly depended onmodel
run outliers and/or the spread of all simulated values.

Figures 5 and 6 show strong and systematic correlations
between the cold extreme and warm extreme climate change
signals of 𝑇min/𝑇max and their corresponding biases for
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temperatures: all values are spatially averaged over the study area.



10 Advances in Meteorology

0
1
2
3
4
5
6
7
8

0 5 10 15

Ch
an

ge
 (∘

C)

Bias (∘C)
−5

R
2
= 0.2135

0
1
2
3
4
5
6
7
8

0 2

Ch
an

ge
 (∘

C)

Bias (∘C)
−10 −8 −6 −4 −2

R
2
= 0.641

0
1
2
3
4
5
6
7
8

0 2

Ch
an

ge
 (∘

C)

Bias (∘C)
−14 −12 −10 −8 −6 −4 −2

R
2
= 0.7413

ARPEGE

CRCM420_CGCM3

CRCM411QC_CGCM3

CRCM423(AET)_CGCM3

CRCM423(AEV)_CGCM3

RCM3_CGCM3

CRCM420_CCSM

MM5I_CCSM

WRFG_CCSM

RCM3_GFDL

ECP2_GFDL

HRM3_HadCM3

Ensemble_mean

DE (RCM/AOGCM)

EQ (RCM/AOGCM)

SEP

0

1

2

3

4

5

6

7

0 5 10 15

Ch
an

ge
 (∘

C)

Bias (∘C)
−10 −5

R
2
= 0.3445

ARPEGE

CRCM420_CGCM3

CRCM411QC_CGCM3

CRCM423(AET)_CGCM3

CRCM423(AEV)_CGCM3

RCM3_CGCM3

CRCM420_CCSM

MM5I_CCSM

WRFG_CCSM

RCM3_GFDL

ECP2_GFDL

HRM3_HadCM3

Ensemble_mean

DE (RCM/AOGCM)

EQ (RCM/AOGCM)

SEP

(d) Winter (Tmax)(c) Summer (Tmax)

(a) Summer (Tmin) (b) Winter (Tmin)

Figure 5: Same as Figure 4 but for the 10th percentile of 𝑇min and 𝑇max.

summer and winter, as suggested in Table 2. For 𝑇min, the
correlation between the 10th percentile change and bias for
winter was not significant, whereas the other cases, for exam-
ple, 10th percentile for summer and 90th percentile changes
for summer andwinter, showed strong correlations.This sug-
gests that the cold extreme 𝑇min in winter may be dominated
by large-scale patterns rather than by the regional physical
processes in RCMs. For 𝑇max, there were strong correlations,
except for the 90th percentile change versus bias for winter.
Furthermore, the dependence of the extreme temperature
change to model bias in summer was much stronger than in
winter, although the correlation between mean change and
bias in winter was more significant for the warm extreme of
𝑇min. Model bias had a significant effect on the future mean
and extremes of𝑇min and𝑇max, indicating that climate signals
in mean values and various ranges of the extremes for both
𝑇min and 𝑇max were significantly and systematically affected
by local physical processes such as topography and surface
conditions, that is, sub-grid-scale processes. In addition,

as shown by the mean changes in Figure 4, the extreme
temperature changes in the synthetic data had a narrower
range and less bias as compared to the RCM/AOGCM
simulations, as expected. This implies that the synthetic
scenarios may reduce future climate variability amongmodel
runs (i.e., a lower level of uncertainty in the future climate)
with improved skill. As noted for the mean precipitation
and 𝑇min, the DE or EQ synthetic scenarios projected higher
signals in the 10th percentile of𝑇min and𝑇max than those from
the ensemble mean or SEP equivalent values in winter.

4.3. Comparison of Seasonal Climate Change Signals between
Median and Extreme Values. As noted in the recent IPCC
report [6], large changes in extreme values relative to the
mean change are projected in the future. Therefore, we
examined the climate change signals of extreme values (90th
percentile for precipitation; 90th and 10th percentiles for both
𝑇max and𝑇min)with respect to themedian values to determine
the respective rate of change among median/extreme values
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Figure 6: Same as Figure 4 but for the 90th percentile of 𝑇min and 𝑇max.

over the study region. Note that the signals were rescaled as
percentages for precipitation and absolute values (i.e., ∘C) for
𝑇min and 𝑇max.

Figure 7 shows the seasonal (summer and winter) climate
change signal of themodels and synthetic data for the 50th (𝑥-
axis) and 90th percentile (𝑦-axis) values over the study area.
For precipitation change, most RCM/AOGCM simulations
projected an increase in both extreme and median values
in summer and winter. In most cases, the change in the
90th percentile was larger than that in the median values,
especially in winter, when the 90th percentile changes were
about twice as large as the 50th percentile changes. This
suggests that the frequency of extreme precipitation events
may increase more rapidly than the mean change in summer
and winter in the future, mainly due to the effects of
global warming that accelerates local convection, with an
enhancement in humidity in the air and the recycling of
water, reaching a higher intensity than that experienced over
the historical period, as also noted in [2].The range of changes

for the 12 RCM/AOGCM simulations was much wider
than for the 2 synthetic simulations (DE (RCM/AOGCM)
and EQ (RCM/AOGCM)), which incorporated weighting
factors into the generation of future climate projections,
enabling the more frequent selection of RCM/GCMs with
a higher accuracy. In addition, the changes in the two
synthetic climate scenarios were very similar to each other,
which may indicate a reduction in future variability among
models (or less pronounced uncertainty), with respect to raw
RCM/AOGCM’s simulations, as suggested in [2].

All of the simulations in this study projected an increase
in the 50th and 90th percentile values for 𝑇min, with a similar
rate of changes in summer, that is, most points were located
on the diagonal line. There was a small increase in the warm
extreme (90th percentile) of 𝑇min and 𝑇max in winter. How-
ever, a quasisystematic higher increase in the warm extreme
than in the median value of 𝑇max was projected for summer,
except in HRM3 HadCM3, which was an outlier among
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Figure 7: Seasonal (summer and winter, left and right panels, resp.) scatter plots of intermodel climate change signal of the 50th (𝑥-axis) and
90th (𝑦-axis) percentile values for precipitation ((a) and (b) panels) and minimum ((c) and (d) panels) and maximum ((e) and (f) panels)
temperatures: all values are spatially averaged over the study area.
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Figure 8: Same as Figure 7 but for the 50th (𝑥-axis) and 10th (𝑦-axis) percentile values of 𝑇min and 𝑇max.

the RCMs. These results indicate that global warming may
affect the mean change more significantly than the extreme
hot 𝑇min and 𝑇max in winter. However, the impacts of climate
change on extreme temperature may depend on topographic
complexity (e.g., mountainous regions; see the suggested
warming amplification in high-elevation regions in [40] and
dry or wet surface conditions). Consequently, the relative
changes need to be investigated in a variety of regions with
different physiographic features. Of the 12 RCM/AOGCM
simulations, the HRM3 HadCM3 projected the greatest pos-
itive change in both the 50th and 90th percentile values for
𝑇min and the highest positive change in both 50th percentile
values for 𝑇max, but negligible changes were projected in 𝑇min
and 𝑇max for winter.The range of changes in 𝑇min for summer
was much narrower (i.e., less uncertainty) than for winter.
The change ratios for 𝑇min and 𝑇max in the four subzones
were similar to each other, although for precipitation a larger
change ratio was projected in the north (not shown here).
This indicates that the spatial variability of 𝑇min and 𝑇max

changes was less pronounced than that for precipitation
because these variables were generally more strongly affected
by both large scale and regional scale forcings. As with
the mean precipitation change, the range of changes for
synthetic climate scenarios was narrower than that of the 12
RCM/AOGCM simulations. The DE and EQ scenarios pro-
duced higher median values of 𝑇min and 𝑇max in winter than
ensemblemean values (i.e., less conservative in this last case).

Figure 8 shows the seasonal (summer and winter) climate
change signals of𝑇min and𝑇max between the 50th (𝑥-axis) and
10th (𝑦-axis) percentiles for the models and synthetic climate
scenarios. In contrast to the warm extremes 𝑇min/𝑇max, the
increase in the 10th percentile (mainly 𝑇max) for the winter
was systematically higher than the increase in the 50th per-
centile in most cases.This indicates that future cold extremes
of temperaturemay be considerably attenuated under climate
change conditions. Remarkably, this was not reflected in the
winter changes of the ensemble mean scenario, where the
changes in the 10th and 50th percentiles for 𝑇min and 𝑇max
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Figure 9: Climate change signal of the 10th percentile values at all grid points within the study area for 𝑇max from DE (RCM/AOGCM), EQ
(RCM/AOGCM), SEP, and the ensemble mean.

were systematically smaller than those of theDE, EQ, and SEP
synthetic scenarios.

Figure 9 provides spatial maps of the 10th percentile 𝑇min
signal in winter to illustrate how well the synthetic scenarios
capture a range of extreme cold projections. The range of
climate change signals for the DE (RCM/AOGCM) and EQ
(RCM/AOGCM) synthetic scenarios was much wider than
that for SEP and the ensemble mean. The climate change
signal of the ensemble mean was restricted to the 3.55–
3.78∘C range, with a smoothing pattern from the averaging
process. In Figures 9(a) and 9(b), the areas in the north had
relatively greater spatial variability in the 10th percentile 𝑇min
signal for winter, whereas Figures 9(c) and 9(d) show a less
warm signal. This demonstrates that the synthetic scenarios
better capture the spatial variability in cold extreme events
frommultiple RCM/AOGCM simulations than they do from
the ensemble mean scenario, which may provide a more
conservative change value because it simply averages all of the
RCM/AOGCM simulations.

5. Summary and Concluding Remarks

This study investigated the relationship between climate
change signals and biases for RCM/AOGCM simulations
to assess the dependence of future projections on regional
model biases for precipitation, 𝑇min, and 𝑇max over southern
Québec (Canada). In addition, we compared 16 projections
(i.e., 12 RCM/AOGCM’s simulations, the ensemble mean,
and 3 synthetic simulations) and considered the median and
extreme seasonal climate change signals.

For precipitation, among the 12 RCM/AOGCM combi-
nations tested, we found that the linear dependence of the
climate change signal on the model bias was not significant
in most cases for either the mean or the extreme values,
indicating that precipitation projection is mainly affected
by emission scenarios or large-scale forcings in combina-
tion or in interaction with various local effects such as
topography and local convection. However, for 𝑇min and
𝑇max, extreme temperature changes (e.g., the 10th and 90th
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percentiles) for summer and winter depended significantly
and systematically on the model bias, except for the warm
extreme 𝑇max (90th percentile) and cold extreme 𝑇min (10th
percentile) in winter. These results suggest that extreme hot
and cold temperatures could be significantly affected by a
large-scale forcing derived from boundary conditions, that is,
the sensitivity of an RCM/AOGCMs, rather than systematic
biases in the RCMs over the study area. In addition, the
dependence of modest temperature changes (e.g., the mean
change in 𝑇min and 10th percentile change of 𝑇max) on
model bias was significant in all seasons in the study area.
The correlation between model bias and mean change was
stronger in winter than summer, while the dependence of
extreme temperature changes (10th and 90th percentiles) on
model bias was stronger in summer than winter. This means
that projections of mean winter temperature and summer
𝑇min/𝑇max extremes may be significantly affected by model
bias (i.e., local physical processes) within the study area. Fur-
thermore, the four synthetic scenarios (ensemble mean, DE
(RCM/AOGCM), EQ (RCM/AOGCM), and SEP) generated
by the MCS technique based on each RCM/AOGCM’s skill
displayed systematically less bias and a narrower range of
mean change for all variables (less uncertainty) compared
with raw RCM/AOGCM simulations.

Regarding the climate change signals of median and
extreme values, the increased percentage of extremes (90th
percentile) was larger than that of median values for precip-
itation due to the higher air temperature, which accelerated
local convection and the water cycle, whereas the increase
in the 90th percentile of both 𝑇min and 𝑇max changes was
similar to that in the 50th percentile, except in summer,
where the hottest temperatures were projected to increase
more than the median 𝑇max values. This indicates that more
extreme precipitation events and a larger increase in mean
temperature may be expected during summer and winter in
the future in southern Québec. Nevertheless, the increase in
the 10th percentile of both𝑇min and𝑇max for winter was larger
than that in the 50th percentile, indicating that future cold
extremes may be attenuated or reduced by global warming.
The range of changes in the signal for the 12 RCM/AOGCM
simulations was much greater than the corresponding range
for the synthetic scenarios. Furthermore, the changes in the
10th and 50th percentiles of𝑇min and𝑇max from the ensemble
mean scenario for winter were systematically smaller than
those of the synthetic scenarios. These results indicate that
the consistency in climate projections may be significantly
improved by incorporating the weighting factors assigned
from RCM/AOGCM skill. Moreover, we found that the
synthetic scenarios (i.e., DE, EQ, and SEP) might provide or
develop spatial variability for cold extreme events, whereas
the ensemble mean was likely to be too conservative due to
the averaging of all RCM/AOGCM simulations.

Although a significant bias-signal correlation was
detected for 𝑇min and 𝑇max in this study, a greater number
of RCM/AOGCM combinations is required to confirm
the effect of model bias introduced by the different skills
of RCM/AOGCM combinations. As noted in previous
studies [2, 6, 19, 38], when RCMs are forced with different
boundary conditions from various AOGCMs, the systematic

biases of AOGCMs may affect the skill of RCM/AOGCM
combinations. Even when RCMs were forced by a specific
AOGCM, the bias patterns (not shown) differed from
one RCM to another, implying a wider spread across the
ensemble of RCMs [13, 19, 41]. Incorporating a larger pool
of RCM/AOGCM’s simulations, as undertaken in the recent
the COordinated Regional climate Downscaling Experiment
initiative (CORDEX;Giorgi et al. [42]; http://wcrp-cordex.ipsl
.jussieu.fr), may provide a more comprehensive insight into
the relationships between bias and climate change signals,
especially for extreme values at the regional scale.
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